The Parabolic Probability Distribution Building Our Distribution

Gary Schurman, MBE, CFA

September, 2023

In this white paper we will create our own probability distribution via a simple polynomial equation. To that end we will work through the following hypothetical problem...

Our Hypothetical Problem

Our client owns shares in a startup where the current share price is $\$ 25.00$. We are tasked with calculating our current share price multiple at some future time T given the following go-forward assumptions...

Table 1: Modeling Assumptions

Assumption	Value	Notes
Probability that multiple $=0.00$	0.30	If multiple is zero then startup fails at time T.
Probability that $0.00<$ multiple ≤ 2.00	0.20	Arbitrary data point in $[0,6]$ range.
Probability that $2.00<$ multiple ≤ 6.00	0.50	Maximum price at time T is six times current price.

Question 1: Graph the cumulative probability distribution of our share price muliple at time T.
Question 2: Graph the probability density function when $x>0$.
Question 3: Prove that our parabola is monotonically increasing.
Question 4: What is the mean and variance of our multiple at time T ?

Parabola Definitions

We will define our parabola $f(x)$ to be the following third-order polynomial...

$$
\begin{equation*}
f(x)=a x^{3}+b x^{2}+c x+d \ldots \text { where } \ldots \mathrm{a}, \mathrm{~b}, \mathrm{c}, \text { and } \mathrm{d} \text { are real numbers and } a \neq 0 \tag{1}
\end{equation*}
$$

Note that our parabola will be subject to the following contraints...

$$
\begin{equation*}
\text { Constraints: } 0 \leq x \leq w \ldots \text { and... } f(x) \text { is monotonically increasing } \tag{2}
\end{equation*}
$$

Using Equation (1) above, the equations for the first and second derivatives of our parabola $f(x)$ with respect to the independent variable x are...

$$
\begin{equation*}
f^{\prime}(x)=3 a x^{2}+2 b x+c \ldots \text { and } \ldots f^{\prime \prime}(x)=6 a x+2 b \tag{3}
\end{equation*}
$$

We will define our parabola such that it passes through the following three data points on the $\mathrm{x}: \mathrm{f}(\mathrm{x})$ plane...

$$
\begin{equation*}
\text { start point: } x=0, f(x)=h \ldots \text { and... mid point: } x=m, f(x)=n \ldots \text { and... end point: } x=w, f(x)=1 \tag{4}
\end{equation*}
$$

We will define our parabola such that the first derivative of $f(x)$ at data point $x=w, f(x)=1$ is a small, positive number. Using Equation (3) above, this statement in equation form is...

$$
\begin{equation*}
\text { slope of parabola at end point }=f^{\prime}(w)=g \ldots \text { where... } g \text { is a small positive number } \tag{5}
\end{equation*}
$$

To define parameter values a, b, c and d we will solve the following system of simultaneous equations...

Table 2: Simultaneous Equations

Description	Data point	Equation
Start point	$0, h$	$a \times 0^{3}+b \times 0^{2}+c \times 0^{1}+d=h$
Mid point	m, n	$a \times m^{3}+b \times m^{2}+c \times m^{1}+d=n$
End point	$w, 1$	$a \times w^{3}+b \times w^{2}+c \times w^{1}+d=1$
Slope at end point	$w, 1$	$3 \times a \times w^{2}+2 \times b \times w^{1}+c=g$

Using the data in the table above, we will define the following matrix and vectors...

$$
\mathbf{A}=\left[\begin{array}{cccc}
0^{3} & 0^{2} & 0^{1} & 1 \tag{6}\\
m^{3} & m^{2} & m^{1} & 1 \\
w^{3} & w^{2} & w^{1} & 1 \\
3 w^{2} & 2 w & 1 & 0
\end{array}\right] \ldots \text { and } \ldots \overrightarrow{\mathbf{b}}=\left[\begin{array}{c}
a \\
b \\
c \\
d
\end{array}\right] \ldots \text { and } \ldots \overrightarrow{\mathbf{v}}=\left[\begin{array}{c}
h \\
n \\
1 \\
g
\end{array}\right]
$$

Using the matrix and vector definitions in Equation (6) above, we can rewrite our system of simultaneous equations as the following matrix:vector product...

$$
\begin{equation*}
\mathbf{A} \vec{b}=\overrightarrow{\mathbf{v}} \tag{7}
\end{equation*}
$$

The solution to Equation (7) above is...

$$
\begin{equation*}
\mathbf{A}^{-1} \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{b}} \ldots \text { where } \ldots \text { vector } \overrightarrow{\mathbf{b}} \text { contains the parameter values } \mathrm{a}, \mathrm{~b}, \mathrm{c} \text { and } \mathrm{d} \tag{8}
\end{equation*}
$$

To ensure that our parabola $f(x)$ is monotonically increasing, we will calculate the value of the inpendent variable x such that first derivative of $f(x)$ is equal to zero (i.e. parabola changes direction). If the value of x is in the range $[0, w]$ then $f(x)$ is not monotonically increasing. To calculate the value of x we iterate the following Newton-Raphson equation until x and \hat{x} are approximately equal...

$$
\begin{equation*}
\text { new } \hat{x}=\hat{x}+\frac{f^{\prime}(x)-f^{\prime}(\hat{x})}{f^{\prime \prime}(\hat{x})} \ldots \text { where } \ldots \hat{x}=\text { estimate of actual } x \ldots \text { and... } f^{\prime}(\text { actual } x)=0 \tag{9}
\end{equation*}
$$

Parabolic Probability Distribution

Given that parabola value at any point on the x -axis range $[0, w]$ is non-negative, parabola value is monotonically increasing, and parabola value at $x=w$ is equal to one, our parabola as defined above is a valid cumulative probability distribution. Using Equation (3) above, the equation for the probability density function is...

$$
\begin{equation*}
P D F(x)=f(x)=d \text { when } x=0 \mid P D F(x)=f^{\prime}(x)=3 a x^{2}+2 b x+c \text { when } x \neq 0 \tag{10}
\end{equation*}
$$

Using Equations (4) and (10) above, the sum of incremental probabilities over the entire x -axis range $[0, w]$ is...

$$
\begin{equation*}
\text { Cumulative probability over }[0, w]=f(w)=d+\int_{0}^{w} P D F(x) \delta x=1.00 \tag{11}
\end{equation*}
$$

Using Appendix Equation (21) below, the equation for the first moment of our probability distribution is...

$$
\begin{equation*}
F M=\mathbb{E}[x]=\frac{3}{4} a w^{4}+\frac{2}{3} b w^{3}+\frac{1}{2} c w^{2} \tag{12}
\end{equation*}
$$

Using Appendix Equation (23) below, the equation for the second moment of our probability distribution is...

$$
\begin{equation*}
S M=\mathbb{E}\left[x^{2}\right]=\frac{3}{5} a w^{5}+\frac{2}{4} b w^{4}+\frac{1}{3} c w^{3} \tag{13}
\end{equation*}
$$

Using Equations (12) and (13) above, the equation for the probability distribution mean and variance are...

$$
\begin{equation*}
\text { mean }=F M \quad \ldots \text { and } \ldots \text { variance }=S M-F M^{2} \tag{14}
\end{equation*}
$$

The Answers To Our Hypothetical Problem

Question 1: Graph the cumulative probability distribution of the share price muliple at time T.
Using our model assumptions in Table 1 above and the simultaneous equations in Table 2 above, our matrix and vectors via Equation (6) above are...

$$
\mathbf{A}=\left[\begin{array}{cccc}
0^{3} & 0^{2} & 0^{1} & 1 \tag{15}\\
2^{3} & 2^{2} & 2^{1} & 1 \\
6^{3} & 6^{2} & 6^{1} & 1 \\
3 \times 6^{2} & 2 \times 6^{1} & 1 & 0
\end{array}\right] \ldots \text { and... } \overrightarrow{\mathbf{b}}=\left[\begin{array}{c}
a \\
b \\
c \\
d
\end{array}\right] \ldots \text { and... } \overrightarrow{\mathbf{v}}=\left[\begin{array}{c}
0.30 \\
0.30+0.20 \\
0.30+0.20+0.50 \\
0.01
\end{array}\right]
$$

Using the matrix and vectors in Equation (15) above, the parameters for our parabola are...

$$
\mathbf{A}^{-1} \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{b}}=\left[\begin{array}{r}
-0.0055 \tag{16}\\
0.0481 \\
0.0258 \\
0.3000
\end{array}\right]
$$

The graph of our parabola using the parameter estimates in Equation (16) above is...

Question 2: Graph the probability density function when $x>0$.

Question 3: Prove that our parabola is monotonically increasing.

xhat	$\mathbf{f}^{\prime}(\mathbf{x})$	$\mathbf{f}^{\prime}($ xhat $)$	$\mathbf{f}^{\prime \prime}($ xhat $)$
3.00	0.00	0.17	-0.0026
65.92	0.00	-65.16	-2.0738
34.50	0.00	-16.25	-1.0395
18.87	0.00	-4.02	-0.5250
11.21	0.00	-0.97	-0.2729
7.67	0.00	-0.21	-0.1565
6.36	0.00	-0.03	-0.1132
6.11	0.00	0.00	-0.1049
6.10	0.00	0.00	-0.1046
6.10	0.00	0.00	-0.1046

Note that our guess value (row one) is $w \div 2=3.00$.
Since the value of x via the Newton-Raphson iteration above $(x=6.10)$ is not in the range $[0,6]$ then our parabola is monotonically increasing.

Question 4: What is the mean and variance of our multiple at time T ?
Using Equations (12) and (16) above, the equation for the first moment of our distribution is...

$$
\begin{equation*}
F M=\frac{3}{4} \times-0.0055 \times 6^{4}+\frac{2}{3} \times 0.0481 \times 6^{3}+\frac{1}{2} \times 0.0258 \times 6^{2}=2.0525 \tag{17}
\end{equation*}
$$

Using Equations (13) and (16) above, the equation for the second moment of our distribution is...

$$
\begin{equation*}
S M=\frac{3}{5} \times-0.0055 \times 6^{5}+\frac{2}{4} \times 0.0481 \times 6^{4}+\frac{1}{3} \times 0.0258 \times 6^{3}=7.4040 \tag{18}
\end{equation*}
$$

Using Equations (14), (17) and (18) above, the answer to the question is...

$$
\begin{equation*}
\text { mean }=2.0525 \ldots \text { and } \ldots \text { variance }=7.4040-2.0525^{2}=3.1912 \tag{19}
\end{equation*}
$$

Appendix

A. We want to solve the following integral...

$$
\begin{align*}
I & =\int_{0}^{w} P D F(x) x \delta x \\
& =\int_{0}^{w}\left(3 a x^{2}+2 b x+c\right) x \delta x \\
& =\int_{0}^{w}\left(3 a x^{3}+2 b x^{2}+c x\right) \delta x \\
& =3 a \int_{0}^{w} x^{3} \delta x+2 b \int_{0}^{w} x^{2} \delta x+c \int_{0}^{w} x \delta x \tag{20}
\end{align*}
$$

The solution to the integral in Equation (20) above is...

$$
\begin{equation*}
I=\frac{3}{4} a x^{4}\left[_{0}^{w}+\frac{2}{3} b x^{3}\left[_{0}^{w}+\frac{1}{2} c x^{2}\left[_{0}^{w}=\frac{3}{4} a w^{4}+\frac{2}{3} b w^{3}+\frac{1}{2} c w^{2}\right.\right.\right. \tag{21}
\end{equation*}
$$

B. We want to solve the following integral...

$$
\begin{align*}
I & =\int_{0}^{w} P D F(x) x^{2} \delta x \\
& =\int_{0}^{w}\left(3 a x^{2}+2 b x+c\right) x^{2} \delta x \\
& =\int_{0}^{w}\left(3 a x^{4}+2 b x^{3}+c x^{2}\right) \delta x \\
& =3 a \int_{0}^{w} x^{4} \delta x+2 b \int_{0}^{w} x^{3} \delta x+c \int_{0}^{w} x^{2} \delta x \tag{22}
\end{align*}
$$

The solution to the integral in Equation (20) above is...

$$
\begin{equation*}
I=\frac{3}{5} a x^{5}\left[_{0}^{w}+\frac{2}{4} b x^{4}\left[_{0}^{w}+\left.\frac{1}{3} c x^{3}\right|_{0} ^{w}=\frac{3}{5} a w^{5}+\frac{2}{4} b w^{4}+\frac{1}{3} c w^{3}\right.\right. \tag{23}
\end{equation*}
$$

